The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 X X X X X 1 X 1 1 1 1 1 X X X 2X+2 1 2X+2 2X+2 X 2X+2 1 2X+2 2X+2 2X+2 X X X X 1 1 1 1 X 2X+2 1 0 2X 0 0 0 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 0 2X 2X 2X 0 0 2X 0 2X 2X 2X 0 0 0 0 2X 2X 2X 0 0 2X 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 0 0 0 2X 0 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 2X 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 2X 0 2X 0 0 2X 2X 0 0 2X 2X 0 2X 0 0 2X 0 0 0 generates a code of length 57 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 56. Homogenous weight enumerator: w(x)=1x^0+7x^56+106x^57+7x^58+6x^65+1x^66 The gray image is a code over GF(2) with n=456, k=7 and d=224. This code was found by Heurico 1.16 in 0.078 seconds.